\(\begin{array} {c} \hline &\text{Tens}&\text{Ones}&\text{Decimal point}&\text{Tenths}\\ \hline &1&2&\cdot&2\\ +&1&5&\cdot&0\\ \hline &&&\cdot&\\ \hline \end{array}\)
\(2+0=2\)
Write \(2\) in the tenths column.
\(\begin{array} {c} &1&2&\cdot&2\\ +&1&5&\cdot&0\\ \hline &&&\cdot&2\\ \hline \end{array}\)
\(2+5=7\)
Write \(7\) in the ones column.
\(\begin{array} {c} &1&2&\cdot&2\\ +&1&5&\cdot&\\ \hline &&7&\cdot&2\\ \hline \end{array}\)
\(1+1=2\)
Write \(2\) in the tens column.
\(\begin{array} {c} \hline &\text{Tens}&\text{Ones}&\text{Decimal point}&\text{Tenths}\\ \hline &1&2&\cdot&2\\ +&1&5&\cdot&\\ \hline &2&7&\cdot&2\\ \hline \end{array}\)
\(\therefore\) The sum of \(12.2\) and \(15\) is \(27.2\)
i.e., \(2.4+1.2\)
\(\begin{array} {c} \hline &\text{Ones}&\text{Decimal point}&\text{Tenths}\\ \hline &2&\cdot&4\\ +&1&\cdot&2\\ \hline &&\cdot&\\ \hline \end{array}\)
\(4+2=6\)
Write \(6\) in the tenths column.
\(\begin{array} {c} &2&\cdot&4\\ +&1&\cdot&2\\ \hline &&\cdot&6\\ \hline \end{array}\)
\(2+1=3\)
Write \(3\) in the ones column.
\(\begin{array} {c} \hline &\text{Ones}&\text{Decimal point}&\text{Tenths}\\ \hline &2&\cdot&4\\ +&1&\cdot&2\\ \hline &3&\cdot&6\\ \hline \end{array}\)
\(\therefore\;3.6\) is the sum of \(2.4\) and \(1.2\)
i.e., \(4.96+1.38\)
\(\begin{array} {c} \hline &\text{Ones}&\text{Decimal point}&\text{Tenths}&\text{Hundredths}\\ \hline &4&\cdot&9&6\\ +&1&\cdot&3&8\\ \hline &&\cdot&\\ \hline \end{array}\)
\(6+8=14\)
Now, \(4\) is to be written in the hundredths column and \(10\) is carried to the next column (tenths).
\(\begin{array} {c} &4&\cdot&^\underline{\color{red}1}9&6\\ +&1&\cdot&\;\;\;3&8\\ \hline &&\cdot&&4\\ \hline \end{array}\)
\(1+9+3=13\)
\(3\) is to be written in the tenths column and \(10\) is carried to the next column (ones).
\(\begin{array} {c} &^\underline{\color{red}1}4&\cdot&9&6\\ +&\;\;\;1&\cdot&3&8\\ \hline &&\cdot&3&4\\ \hline \end{array}\)
\(1+4+1=6\)
\(6\) is to be written in the ones column.
\(\begin{array} {c} \hline &\text{Ones}&\text{Decimal point}&\text{Tenths}&\text{Hundredths}\\ \hline &4&\cdot&9&6\\ +&1&\cdot&3&8\\ \hline &6&\cdot&3&4\\ \hline \end{array}\)
\(\therefore\;6.34\) is the sum of \(4.96\) and \(1.38\)
\(\begin{array} {c} \hline &\text{Tens}&\text{Ones}&\text{Decimal point}&\text{Tenths}&\text{Hundredths}&\text{Thousandths}\\ \hline &3&1&\cdot&3&4&3\\ +&4&2&\cdot&4&5&6\\ \hline &&&\cdot&&&\\ \hline \end{array}\)
\(3+6=9\)
\('9'\) is to be written in the thousandths column.
\(\begin{array} {c} &3&1&\cdot&3&4&3\\ +&4&2&\cdot&4&5&6\\ \hline &&&\cdot&&&9\\ \hline \end{array}\)
\(4+5=9\)
\('9'\) is to be written in the hundredths column.
\(\begin{array} {c} &3&1&\cdot&3&4&3\\ +&4&2&\cdot&4&5&6\\ \hline &&&\cdot&&9&9\\ \hline \end{array}\)
\(3+4=7\)
\('7'\) is to be written in the tenths column.
\(\begin{array} {c} &3&1&\cdot&3&4&3\\ +&4&2&\cdot&4&5&6\\ \hline &&&\cdot&7&9&9\\ \hline \end{array}\)
\(1+2=3\)
\(3\) is to be written in the ones column.
\(\begin{array} {c} &3&1&\cdot&3&4&3\\ +&4&2&\cdot&4&5&6\\ \hline &&3&\cdot&7&9&9\\ \hline \end{array}\)
\(3+4=7\)
\(7\) is to be written in the tens column.
\(\begin{array} {c} \hline &\text{Tens}&\text{Ones}&\text{Decimal point}&\text{Tenths}&\text{Hundredths}&\text{Thousandths}\\ \hline &3&1&\cdot&3&4&3\\ +&4&2&\cdot&4&5&6\\ \hline &7&3&\cdot&7&9&9\\ \hline \end{array}\)
\(\therefore\;73.799\) is the sum of \(31.343\) and \(42.456\)
i.e. \(8.6+4.310+10.6055\)
\(\begin{array} {c} \hline &\text{Tens}&\text{Ones}&\text{Decimal point}&\text{Tenths}&\text{Hundredths}&\text{Thousandths}&\text{Ten thousandths}\\ \hline &&8&\cdot&6&0&0&0\\ &&4&\cdot&3&1&0&0\\ +&1&0&\cdot&6&0&5&5\\ \hline &&&\cdot&&&&\\ \hline \end{array}\)
\(0+0+5=5\)
\(5\) is to be written in the ten-thousandths column.
\(\begin{array} {c} &&8&\cdot&6&0&0&0\\ &&4&\cdot&3&1&0&0\\ +&1&0&\cdot&6&0&5&5\\ \hline &&&\cdot&&&&5\\ \hline \end{array}\)
\(0+0+5=5\)
\(5\) is to be written in the thousandths column.
\(\begin{array} {c} &&8&\cdot&6&0&0&0\\ &&4&\cdot&3&1&0&0\\ +&1&0&\cdot&6&0&5&5\\ \hline &&&\cdot&&&5&5\\ \hline \end{array}\)
\(0+1+0=1\)
\(1\) is to be written in the hundredths column.
\(\begin{array} {c} &&8&\cdot&6&0&0&0\\ &&4&\cdot&3&1&0&0\\ +&1&0&\cdot&6&0&5&5\\ \hline &&&\cdot&&1&5&5\\ \hline \end{array}\)
\(6+3+6=15\)
\(5\) is to be written in the tenths column and \(10\) is carried to the next column (ones).
\(\begin{array} {lrc} \text{Carried}\to&&^\underline{\color{red}1}8&\cdot&6&0&0&0\\ &&4&\cdot&3&1&0&0\\ +&1&0&\cdot&6&0&5&5\\ \hline &&&\cdot&5&1&5&5\\ \hline \end{array}\)
\(1+8+4+0=13\)
\(3\) is to be written in the ones column and \(10\) is carried to the next column (tens).
\(\begin{array} {lrc} &&8&\cdot&6&0&0&0\\ &\text{Carried}\to\underline{\color{red}1}&4&\cdot&3&1&0&0\\ +&1&0&\cdot&6&0&5&5\\ \hline &&3&\cdot&5&1&5&5\\ \hline \end{array}\)
\(1+1=2\)
\(2\) is to be written in the tens column.
\(\begin{array} {c} \hline &\text{Tens}&\text{Ones}&\text{Decimal point}&\text{Tenths}&\text{Hundredths}&\text{Thousandths}&\text{Ten thousandths}\\ \hline &&8&\cdot&6&0&0&0\\ &&4&\cdot&3&1&0&0\\ +&1&0&\cdot&6&0&5&5\\ \hline &2&3&\cdot&5&1&5&5\\ \hline \end{array}\)
\(\therefore\;23.5155\) is the sum of \(8.6,\;4.310\) and \(10.6055\).
Here, there are \(60\) shaded squares in total. So, now the grid represents \(0.60\)
Thus, \(0.25+0.35=0.60\)